References
Autowiring: a C++ inversion of control framework. https://github.com/leapmotion/autowiring. Accessed: 12-28-2022.
Better scientific software. https://bssw.io/. Accessed: 12-30-2022.
German society for research software engineers. https://de-rse.org/de/index.html. Accessed: 12-30-2022.
Pococapsule: an IoC and DSM framework for C/C++ applications. https://code.google.com/archive/p/pococapsule. Accessed: 12-28-2022.
Research software alliance. https://www.researchsoft.org/. Accessed: 12-30-2022.
Software engineering for science. https://se4science.org/. Accessed: 12-30-2022.
The molecular sciences software institute. https://molssi.org/. Accessed: 12-28-2022.
The nordic research software engineers association. https://nordic-rse.org/. Accessed: 12-30-2022.
The society of research software engineering. https://society-rse.org. Accessed: 12-30-2022.
The software sustainability institute. https://www.software.ac.uk/. Accessed: 12-30-2022.
The united states research software engineer association. https://us-rse.org/. Accessed: 12-30-2022.
The RSE association of australia and new zealand. https://rse-aunz.github.io/. Accessed: 12-30-2022.
Working towards sustainable software for science: practice and experiencies. https://wssspe.researchcomputing.org.uk/. Accessed: 12-30-2022.
MolSSI Driver Interface (MDI) Library. https://github.com/MolSSI-MDI/MDI_Library. Accessed: 12-30-2022.
ioc-cpp: inversion of control/dependency injection container for c++03. https://github.com/mrts/ioc-cpp. Accessed: 12-28-2022.
ioc: inversion of control container c++11. https://github.com/unixdev0/ioc. Accessed: 12-28-2022.
D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif, T. W. Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl, M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and S. Zhou. A component architecture for high-performance scientific computing. International Journal of High-Performance Computing Applications, 20(2):163 – 202, 2006. doi:10.1177/1094342006064488.
T. D. Crawford, C. D. Sherrill, E. F. Valeev, J. T. Fermann, R. A. King, M. L. Leininger, S. T. Brown, C. L. Janssen, E. T. Seidl, J. P. Kenny, and W. D. Allen. PSI3: an open-source ab initio electronic structure package. Journal of Computational Chemistry, 28(9):1610–1616, 2007. doi:https://doi.org/10.1002/jcc.20573.
V. M. Ingman, A. J. Schaefer, L. R. Andreola, and S. E. Wheeler. QChASM: quantum chemistry automation and structure manipulation. WIREs Computational Molecular Science, 11(4):e1510, 2021. doi:https://doi.org/10.1002/wcms.1510.
C. R. Jacob, S. M. Beyhan, R. E. Bulo, A. S. P. Gomes, A. W. Götz, K. Kiewisch, J. Sikkema, and L. Visscher. PyADF — a scripting framework for multiscale quantum chemistry. Journal of Computational Chemistry, 32(10):2328–2338, 2011. doi:https://doi.org/10.1002/jcc.21810.
C. L. Janssen, E. T. Seidl, and M. E. Colvin. Object-Oriented Implementation of Parallel Ab Initio Programs, chapter 4, pages 47–61. American Chemical Society, 1995. doi:10.1021/bk-1995-0592.ch004.
A. Krylov, T. L. Windus, T. Barnes, E. Marin-Rimoldi, J. A. Nash, B. Pritchard, D. G. A. Smith, D. Altarawy, P. Saxe, C. Clementi, T. D. Crawford, R. J. Harrison, S. Jha, V. S. Pande, and T. Head-Gordon. Perspective: computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. The Journal of Chemical Physics, 149(18):180901, 2018. doi:10.1063/1.5052551.
A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen. The atomic simulation environment—a python library for working with atoms. Journal of Physics: Condensed Matter, 29(27):273002, 2017. doi:10.1088/1361-648X/aa680e.
Wim T. L. P. Lavrijsen and Aditi Dutta. High-performance python-C++ bindings with pypy and cling. In 2016 6th Workshop on Python for High-Performance and Scientific Computing(PyHPC), volume, 27–35. 2016. doi:10.1109/PyHPC.2016.008.
S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Computational Materials Science, 68:314–319, 2013. doi:https://doi.org/10.1016/j.commatsci.2012.10.028.
R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. III DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. III Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill. Psi4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. Journal of Chemical Theory and Computation, 13(7):3185–3197, 2017. doi:10.1021/acs.jctc.7b00174.
C. Peng, C. Lewis, X. Wang, M. Clement, F. Pavosevic, J. Zhang, V. Rishi, N. Teke, K. Pierce, J. Calvin, J. Kenny, E. Seidl, C. Janssen, and E. Valeev. The massively parallel quantum chemistry program (MPQC), version 4.0.0-beta.1. http://github.com/ValeevGroup/mpqc. Accessed: 12-29-2022.
D. G. A. Smith, D. Altarawy, L. A. Burns, M. Welborn, L. N. Naden, L. Ward, S. Ellis, B. P. Pritchard, and T. D. Crawford. The MolSSI QCArchive project: an open-source platform to compute, organize, and share quantum chemistry data. WIREs Computational Molecular Science, 11(2):e1491, 2021. doi:https://doi.org/10.1002/wcms.1491.
D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer, A. Y. Sokolov, K. Patkowski, A. E. DePrince, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill. PSI4 1.4: open-source software for high-throughput quantum chemistry. The Journal of Chemical Physics, 152(18):184108, 2020. doi:10.1063/5.0006002.
Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan. PySCF: the python-based simulations of chemistry framework. WIREs Computational Molecular Science, 8(1):e1340, 2018. doi:https://doi.org/10.1002/wcms.1340.
J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, and T. D. Crawford. Psi4: an open-source ab initio electronic structure program. WIREs Computational Molecular Science, 2(4):556–565, 2012. doi:https://doi.org/10.1002/wcms.93.